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Short Papers

Circuit Parameters for Single and Coupled Microstrip
Lines by a Rigorous Full-Wave Space-Domain Analysis

NIELS FACHE anp DANIEL DE ZUTTER

Abstract —A rigorous full-wave analysis is applied to determine the
dispersion characteristics and the impedance matrix of coplanar microstrip
lines. It is shown that the impedance definition based on the propagating
power and the longitudinal current is the most appropriate one. Examples
are given for the single strip, for two coupled strips, either symmetric or
asymmetric, and for a three-strip configuration. Some attention is also
devoted to the current profiles associated with each eigenmode.

1. INTRODUCTION

Although in the past considerable attention was already de-
voted to the analysis of the dispersion characteristics and to the
calculation of the characteristic impedance of both single and
coupled microstrip line configurations, the dynamic behavior and
accurate modeling of such structures have gained increasing
importance due their presence in high-speed interconnections.

The single and coupled microstrip problems have been ana-
lyzed by several methods. We refer the reader to [1]-[7] for a
review of various approaches and results. Important results were
obtained through the spectral-domain approach. A comprehen-
sive review of papers up to October 1985 can be found in [2].

In the original spectral-domain approach the boundary condi-
tions on the strip were only satisfied in a single point at the
center of the strip. In the more recent publications using the
spectral-domain approach either a more accurate closed-form
representation of the current or a representation of the current
using a larger number of basis functions is introduced. In these
cases the boundary conditions are imposed in some global sense.
In the present paper the full-wave solution proposed in [6] is
applied to the single and coplanar multistrip problem. In the
latter case it is essential to include enough degrees of freedom in
the representation of the current distribution. Both the transverse
and the longitudinal current are discretized using the method of
moments in such a way that the edge conditions are satisfied. The
boundary conditions on the strip are no longer imposed in a
global sense, as in the spectral-domain approach, but at a num-
ber of points equally spaced along the strip. By explicitly satisfy-
ing the boundary conditions in the end points of each strip, not
only is the high-frequency behavior handled correctly, but the
numerical results remain accurate in the low-frequency and static
limit.

As a result of the space-domain field analysis the dispersion
characteristics of the structures under study are found. In order
to obtain a complete transmission line equivalent for those struc-
tures, their characteristic impedance(s) must be determined. This
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Fig. 1

Coupled microstrip lines on a dielectric substrate.

important issue has been extensively discussed in the literature
[8]-{12). In Section III we start from the general outline given in
[11] and [12] to compare the differeni results for the characteristic
impedance obtained when voltage—current, power—voltage, and
power—current definitions are used.

In Section IV, which constitutes the major part of this paper,
we demonstrate the flexibility of our method by presenting
numerical results for both the effective dielectric constant and the
characteristic impedance(s) as a function of frequency for the
single strip and for the coplanar coupled two-strip problem. Both
symmetric and asymmetric coupled lines are considered. Results
for the three-strip problem are also presented, demonstrating the
flexibility of our method to be extended to many strips. In the
coupled line cases the effective dielectric constant and the charac-
teristic impedances must be supplemented by the ratio of the
total longitudinal currents flowing along each strip to yield a
complete equivalent network description of such structures [13].
Finally, special attention is also devoted to the numerical results
for both the transverse and longitudinal currents on the strips.

II. GENERAL FORMULATION

The configuration under consideration consists of N coupled
coplanar microstrips with variable width and gap spacing as
shown in Fig. 1 for a three-strip configuration. The strips are
infinitely thin and perfectly conducting. This is also the case for
the ground plane at z = 0. The microstrip substrate (medium 1),
with thickness d, consists of a lossless, nonmagnetic material
with relative permittivity e,. The top layer is air (medium 2). The
structure is assumed to be uniform and infinite in both the x and
the z direction. For the calculation of the electromagnetic fields
excited by one of the N lowest eigenmodes, we start from the
surface current densities on each strip. To solve the fi€ld problem
and to determine the eigenvalues and eigenmodes of the coupled
strips, we start from a suitable integral equation. The electrical
Green’s dyadic for the layered structure constitutes the kernel of
this integral equation. We refer the reader to [6] for the actual
form of this integral equation and for its solution technique. The
method in [6] is a combination of the method of moments and a
point-matching technique. The basis functions used to represent
the current are chosen in such a way that Meixner’s edge condi-
tions are explicitly satisfied in the end points of each strip.
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III. CIrRCUIT DESCRIPTION OF SINGLE AND COUPLED
MICROSTRIPS

A. Single Strip

The purpose of the proposed electromagnetic analysis of single
and coupled microstrips is to obtain an equivalent (coupled)
transmission line model which represents an accurate circuit
description of the structures under consideration. These transmis-
sion line models can then be used together with device models in
circuit simulators to analyze more complex circuits.

For pure TEM structures the voltage V, and the current I, in
the transmission line model have the meaning of a voltage and a
current in a circuit. The characteristic impedance is unique. The
three possible definitions for the impedance Z, ie., the
power—current definition Z=2P/|I|*, the power—voltage defi-
nition Z = |V}|>/(2P*), and the voltage-current definition Z=
V,/1,, give the same result. P represents the complex power
L*V, /2 flowing along the TEM structure and along the equiva-
lent transmission line.

For non-TEM structures, such as the microstrip, the problem is
more difficult. In a recent paper, Brews discussed the transmis-
sion line models for dispersive waveguides [11]. As a starting
point, he required that both waveguide and equivalent transmis-
sion line should have the same propagation constant 8 and
propagate the same complex power P. This equivalence only
requires the phase of Z to be constant (zero in the case of a
lossless waveguide). The voltage ¥, and the current I, of the
equivalent line can always be replaced by a¥; and I, /a*, where «
is an arbitrary complex constant. As in the TEM case the power
propagated in the modeled waveguide remains V;1,*/2, but the
amplitude of the characteristic impedance Z = |a|*V, /I, is not
constant. The “voltage” V, and the “current” I, are weighted
averages of the transverse electric and magnetic fields. In con-
tradistinction to TEM structures, a circuit interpretation of V]
and I, is not always possible. However, it is very important to
note that the required equivalence between waveguide and trans-
mission line model ensures that the three possible definitions for
the characteristic impedance give the same result. Hence, differ-
ent equivalent transmission line models differ in the choice of the
amplitude of Z. This degree of freedom, which enables us to
choose the amplitude of V], I, or Z, can be used to choose the
voltage or the current in such a way that one of them can be
given a circuit interpretation [12]. In this way it becomes possible
to obtain a transmission line model which can be interconnected
with (TEM) models for drivers and loads.

In the case of a single microstrip if the current is selected as
the independent variable, it can be chosen to be the total longitu-
dinal current I. If the voltage is selected as an independent
variable, it can be chosen to be the strip center voltage ¥,
(calculated along the axis of symmetry of the strip). For both of
the above choices, either the voltage or the current has a circuit
interpretation. The question of which model is the most appropti-
ate as a circuit description is extensively treated in [9]-[12]. The
general conclusion is that a transmission line model based on the
longitudinal current is the most accurate one. This model has the
most TEM-like character [9], as will be shown by the numerical
results presented in this paper. Due to this fact and to the fact
that the total longitudinal current I is a physical quantity which
is conserved when the strip is connected to a load or to a driver,
the power—current model is the most suitable one for modeling
interconnections between microstrip lines and TEM structures
such as loads and drivers.
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To characterize the equivalent transmission line we need the
propagation constant 8 of the eigenmode, the total longitudinal
current, and the propagated power. The first two quantities
follow directly from the solution of the integral equation. The
propagated power P can be found as the integration over the
cross section of the microstrip of Poynting’s vector projected
onto the longitudinal x direction. Once the power P and the total
longitudinal current I=1I, are calculated, the characteristic
impedance and the voltage of the equivalent transmission line
under consideration are given by

ZP1=2P/|Izl2 and V,=Z,1,. (1)
In Section 1V this transmission line model is compared with an
equivalent model based on the power and the strip center voltage
and with a modél based on the strip center voltage and the
current. The latter is not an equivalent model because it does not
propagate the same power as the actual microstrip line except in
the quasi-TEM limit. In spite of the restricted usefulness of the
last two models, it remains interesting to compare them with the
power—current model in order to show that they yield the same
result in the quasi-TEM limit and to illustrate the fact that there
is a difference between the strip center voltage ¥, and the voltage
V, defined in (1), which is a weighted average over the cross
section of the structure. For the numerical details the reader is
referred to the example discussed in Section IV.

B. Coupled Strips

To extend the power—current equivalent model for a single
microstrip to coupled microstrips we have to determine how the
total propagating power associated with each eigenmode is di-
vided over the strips. For pure TEM structures this follows
directly from a knowledge of the currents flowing along each
conductor and from the voltage differences between each pair of
conductors. The numerical results given in this paper are based
on the following distribution of the total power P over the N
strips proposed by Jansen [1]:

P= [[(ExH)-uds )
S

where P, is the power associated with strip i and the integration
extends over the surface S of the cross section of the structure. E
is the total electric field and H, is the field excited by the current
on strip i. Definition (2) satisfies two necessary conditions: it
yields the correct value of the total power and it gives correct
results when applied to TEM structures. The impedance associ-

ated with strip i is given by [1]
[[(ExH)-u.ds
7 -8

1 212

4

=P /(217) (3)

where I, indicates the total longitudinal current on strip i. To
obtain an impedance matrix of a coupled strip configuration we
still need the ratios of the longitudinal currents, together with the
strip impedances, strip powers, and the propagation constant.
These ratios follow directly from the solution of the eigenmode
problem. Not all of these quantities are independent [13]. In the
case of symmetric two-strip configurations the current ratios are
automatically 1 for the even modes or —1 for the odd modes.

IV. NUMERICAL RESULTS

In this section we have selected several examples both for the
single-strip and for the coupled-strip problem in order to demon-
strate the flexibility and accuracy of our method. In each case
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Fig. 2. Effective dielectric constant and impedances for a single strip (w =
3.04 mm, d=317 mm, and ¢, =11.7).

both the dispersion characteristic and the characteristic
impedance(s) were calculated, leading to an equivalent transmis-
sion line representation for each eigenmode. To obtain converg-
ing results, no more than ten divisions per strip were needed for
the dispersion characteristics and impedance results. For the
current profiles, however, especially for the transversal currents,
as many as 20 divisions turned out to be necessary.

Fig. 2 shows the effective dielectric constant (€,).; = (8,/k;)?
as a function of frequency f = w/27 for a single strip of width
w =304 mm, substrate thickness d=3.17 mm, and €, =11.7.
Our results differ by less than 1 percent from the results in [3].
The other curves in Fig. 3 show the characteristic impedance
calculated according to the three definitions given in Section III
(PV,: power—voltage; V,I: voltage-current; PI: power—current),
These results clearly illustrate the fact that the P/ definition has
the most TEM-like character [9] as its value only starts to
increase at higher frequencies as compared with the PV, and VI
results. Analogous curves in [8), but for a different configuration,
do not coincide in the low-frequency limit. As stated by the
authors, this is due to inaccurate modeling of the currents. Qur
results clearly prove the accuracy of the current modeling pro-
posed in this paper.

We now turn to some examples for the two-strip configuration.
The full lines in Figs. 3 and 4 give the results of our approach for
a typical symmetric coupled-strip configuration: width of each
strip wy; =w, = 0.6 mm, substrate thickness 4 = 0.64 mm, and
€, =9.9. Fig. 3 shows the dispersion characteristics while Fig. 4
gives the characteristic impedances for both the even and the odd
mode. The gap spacing s takes the values 0.02 mm, 0.6 mm, and
2 mm. The case s == o0, which is the single-strip case, forms the
boundary between even and odd modes. We have compared our
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Fig. 3. Effective dielectric constant for two coupled strips with the gap

spacing s as a parameter (wy = w, = 0.6 mm, & = 0.64 mm, and ¢, = 9.9).
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Fig. 4. Power-current impedance for two coupled strips with the gap spac-
ing s as a parameter (wy=w, = 0.6 mm, ¢ =0.64 mm, and ¢, = 9.9).

results with the ones in {4] given in dashed lines. The results for
(€ ) differ only slightly while the impedances differ consider-
ably at higher frequencies. This is due to the fact that in [4] the
PV, definition is used, whereas the PI definition is used here.
Looking at the full lines in Fig. 4, it becomes very clear that the
impedances calculated through the PI definition (full lines) keep
their static value over a considerably higher frequency range.

As a next example we discuss the asymmetric coupled-line
problem also treated by Tripathi [7] starting from a parallel-plate
waveguide analysis. The widths of the strips are w, = 0.6 mm and
w, =03 mm, the gap spacing s=0.4 mm, the substrate
thickness d = 0.635 mm, and ¢, =9.7. The longitudinal current
J. and the transversal current J, at 1 GHz are shown in Figs. 5
and 6, for both the ¢ mode and the = mode. J, and J, are in
quadrature and the transversal current is four orders of magni-
tude smaller than the longitudinal one. The notation o #(~1) in
Fig. § and ¢ +(—1) in Fig. 6 indicates that the actual currents are
found by reversing the sign of the results shown in the figure.
Taking a close look at Fig. 5 shows that the amplitude of J, for
the ¢ mode (full lines) is smaller near the neighboring edges of
strip 1 and strip 2 as compared to the value at the other edges.
This is due to the repulsion between the currents for this mode.
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Fig. 5. Longitudinal current J, at 1 GHz for an asymmetric strip configura-
tion (¢ and # modes) with w; =06 mm, wy,=03 mm, s=
0.4 mm, d = 0.635 mm, and ¢, =9.7.
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Fig. 6. Transversal current J, at 1 GHz for the same configuration as in

Fig. 5.

The situation is the other way around for the # mode (dashed
lines).

The full lines in Fig. 7 give (¢, ). as a function of frequency
for the asymmetric configuration discussed above and for a
similar configuration but with w, =12 mm instead of
w, = 0.3 mm. The dashed lines are the corresponding results from
{71. For the # mode and for w, = 0.3 mm, both results coincide.
Fig. 8 shows the impedances associated with each strip as defined
by (3) for the same parameters as in Fig. 7. In this case no
corresponding results can be found in [7). It is again clear that
the impedances differ only slightly from their static values. As
explained in Section IIl, the circuit description must be supple-
mented with the ratios of the total longitudinal currents. As these
ratios change only very slightly over the selected frequency range
we restrict our results to 1 GHz. At this frequency and for
w, = 0.3 mm the ratio of the total longitudinal currents I, on
strip 2 to the total current ‘J; on strip 1 for the ¢ mode is
L /I, = 0647 and I, /I, = —1.046 for the = mode. For w, =12
mm this becomes I, /I, =1.762 for the ¢ mode and I, /I, =
—0.923 for the #» mode.

Finally, in order to show the applicability of our method to the
multistrip problem, we turn to the strip configuration of Fig. 9.
The three strips have equal widths w, =w, =w; =1 mam and
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Fig. 7. Effective dielectric constant for the asymmetric coupled strip config-

uration of Fig. 5 and for a similar configuration with w, =
1.2 mm.
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Fig. 8. Power-current impedances for the asymmetric coupled strip configu-
ration of Fig. 7 and for a similar configuration with w, =
1.2 mm,

equal gap spacings s;; =sy; =1 mm. The substrate thickness
d=1 mm and ¢, =10. For the currents we have restricted the
results to the longitudinal J. current at 1 GHz for the first and
second even mode and for the first odd mode, as shown on Fig.
9. The solid lines in Fig. 10 give the effective dielectric constant
as a function of frequency for these three modes, The dashed
lines show the impedances. For each mode Z, = Z; and for the
odd mode the total longitudinal current on strip 2 and the
associated power (2) are zero; hence Z, is not defined and in fact
is not needed in the equivalent transmission line representation.
Two other dash—dot curves are shown in Fig. 10. They give the
ratio {1, /1| of the total longitudinal current 7, of strip 2 and the
corresponding current [; = I on strip 1 for the first and second
even mode. For the odd mode this ratio vanishes as I, = 0.

V. CONCLUSION

Based on a full-wave analysis of the eigenmodes of coupled
coplanar strips we obtained an equivalent transmission line rep-
resentation for these structures by determining their dispersion
characteristics and their impedance matrix as well as the ratios of
the total longitudinal currents flowing on each strip.
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Fig. 9. Longitudinal current J, at 1 GHz for a three-strip problem with
w; =w, =wy =1 mm, s, =253 =1 mm, d=1 mm, and ¢, =10.
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Fig. 10. Dispersion characteristics, power—current impedances, and total
longitudinal current ratios for the three-strip configuration of Fig. 9.

For the single-strip configuration we compared the voltage-
current, power—voltage, and power—current definitions for the
characteristic impedance. It was shown that the power—current
definition has the most TEM-like character, as it changes more
slowly as a function of frequency than the other definitions. This
property also holds good for the double- and triple-strip configu-
rations, as was shown by some typical examples.

By incorporating Meixner’s edge conditions and by explicitly
satisfying the relevant integral equation in the end points, an
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accurate solution is ensured for all field quantities in both the
low-frequency and the high-frequency range.
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A FET Amplifier in Finline Technique

JEAN L’ECUYER, MEMBER, IEEE,
GREGORY B. GAIDA, MEMBER, IEEE, AND
WOLFGANG J. R. HOEFER, SENIOR MEMBER, IEEE

Abstract —The successful design and realization of a stable FET ampli-
fier in finline technique are presented. The circuit has been realized in
integrated E-plane technology and features an input and an output port in
unilateral finline and a combined microstrip/coplanar bias circuit. The
amplifier has been designed for 17 GHz operation and has a gain of 6 dB
over a bandwidth of 1 GHz using a NE673(0 FET.

I. INTRODUCTION

In this paper, the design and performance of a novel finline
amplifier will be described. The essential features of this ampli-
fier were briefly outlined in [1]. Very little work had been
reported previously on the realization of field-effect transistor
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